

January 1 to December 31, 2019

provide safe drinking water.

Annual Water Quality Report for the period of

important information about your drinking water

The source of drinking water used by BEECHER is

This report is intended to provide you with

and the efforts made by the water system to

BEECHER IL1970050

VILLAGE OF BEECHER

Consumer Confidence Report

2019 Annual Village of Beecher Drinking Water Quality Report

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

This report will not be mailed. Copies may be obtained at the Village website: <u>www.villageofbeecher.org</u> or upon request at the Beecher Village Hall, 625 Dixie Hwy, Beecher, IL 60401

For more information regarding this report

Name: Steven Zellner

Ground Water

contact:

entienda bien.

Phone: 708-946-2261

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo

VILLAGE OF BEECHER

Source Water Information

Source Water Name		Type of Water	Report Status	Location
WELL 3 (00399)	1 BLK W DIXIE HWY	GW		1 ROMANS RD
WELL 4 (00832)		GW		628 GOULD ST
WELL 5 (01750)		GW		APPROX 1250FT N OF CHURCH RD, 3032 FT E OF DIXIE HWY, 1455 Rolling Pass

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by the Beecher Village Hall or call our water operator at 708-946-2261. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: BEECHER. To determine Beecher's susceptibility to groundwater contamination, the following document was reviewed: a Well Site Survey, published in 1989 by the Illinois EPA. Based on the information obtained in this document, there are eight potential sources of groundwater contamination that could pose a hazard to groundwater utilized by Beecher's Community Water Supply. These include a treated wood/lumber yard, a pesticide retail sales, one fertilizer retail sales, a fire station, a private well, one below ground fuel storage tank, and two above ground fuel storage tanks. In addition, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several sites with on- going remediation that might be of concern. The susceptibility determination for this community water supply is based on a number of criteria including monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system, and available hydrogeologic data on the wells. The Illinois EPA has determined that the Beecher Community Water Supply's source water is not susceptible to contamination. The land use within the wellhead protection area was analyzed as part of this susceptibility determination. This land use includes residential and commercial properties.

VILLAGE OF BEECHER

2019 Regulated Contaminants Detected

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive		Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	1	Fecal Coliform or E. Coli MCL: A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive.	1	Ν	Naturally present in the environment.

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.37	0	ppm	Ν	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2019	0	15	1.1	0	ppb	Ν	Corrosion of household plumbing systems; Erosion of natural deposits.

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

na: not applicable.

mrem: millirems per year (a measure of radiation absorbed by the body)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	2019	0.5	0.4 - 0.5	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2019	5	4.58 - 4.58	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2019	12	11.62 - 11.62	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	11/14/2018	1.2	1.2 - 1.2	0	10	ppb	Ν	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	11/14/2018	0.023	0.023 - 0.023	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	11/14/2018	0.924	0.924 - 0.924	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Iron	11/14/2018	0.19	0.19 - 0.19		1.0	ppm	Ν	This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits.
Manganese	11/14/2018	6.1	6.1 - 6.1	150	150	ppb	Ν	This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits.
Nitrate [measured as Nitrogen]	2019	0.04	0 - 0.04	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Sodium	11/14/2018	65	65 - 65			ppm	N	Erosion from naturally occurring deposits. Used in water softener regeneration.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	02/27/2017	1.38	1.38 - 1.38	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	04/17/2015	2.98	0.489 - 2.98	0	15	pCi/L	N	Erosion of natural deposits.